If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-11x-105=0
a = 2; b = -11; c = -105;
Δ = b2-4ac
Δ = -112-4·2·(-105)
Δ = 961
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{961}=31$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-31}{2*2}=\frac{-20}{4} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+31}{2*2}=\frac{42}{4} =10+1/2 $
| 84(y-15)=y-55 | | 1/9+5/18=x | | y=3;(2,6) | | 130=7(y+10) | | -130=7(y+10) | | -130=7(y-10) | | *x3=-180 | | -8=2(y-5) | | 12x²+12x-6=0 | | 5(g-4)=5 | | (10x+13)+(x+6)=180 | | (10x+13)+(8x+2)=90 | | (4x-7)°+(x+16)°=68 | | (X+9)/(9x)=6 | | 40=10(-d+9) | | 2/3(4x-2)=-3/4(-3x+8) | | C=11÷1.6t | | ?x10=33 | | 1/9+x=6 | | 7x-5)+(9x-7)=180 | | 8x-13=4x+11= | | 9y=6-y | | 5(x-6)=3x-2 | | -24=4(d+5) | | b−1/4=31/2 | | 3(x-4)^2+20=47 | | 3n-(2=+n) | | 2(x^2-8)-4=-8 | | 2x^2-16x+37=0 | | 5(b-5)=10 | | .10+7x³=−46 | | 5+4d=89 |